PHASE STATES OF EUROPIUM SELENITES IN AQUEOUS MEDIUM AND IN THERMAL ANALYSIS G. G. Gospodinov¹ and M. G. Stancheva² #### Abstract The solubility isotherm of the system Eu₂O₃-SeO₂-H₂O was studied at 100°C. Certain amounts of the obtained selenites (normal and acid) were subjected to thermal analysis. The intermediate phases were isolated and chemical and X-ray phase analysis was made. The scheme of thermal decomposition was determined. Keywords: europium selenites, solubility isotherm, thermal analysis, X-ray pattern ## Introduction Data concerning the selenites of europium are rather scarce. There are no data available for the oxide salts. Hydrogen selenite was studied by Eivor Immonen et al. [1]. They obtained EuH(SeO₃)₂·2.5H₂O by mixing EuCl₃·6H₂O (made alkaline by addition of ammonia) with a 2 M solution of H₂SeO₃. After staying in the mother solution for 24 h, small, needle-shaped crystals were formed. A thorough study of their work, however, arouses some doubt about the number of the molecules of crystal water. The existence of all possible phases in the three-component system Eu_2O_3 – SeO_2 – H_2O may be evidenced by studying and drawing the isotherm of the phase states. # Experimental Eu₂O₃ with a mole-fraction purity of 0.9999 and high purity hydrochloric acid (commercial products of Merck or Fluka) were used as initial compounds. We obtained SeO₂ by oxidation of selenium in nitric acid. SeO₂ was purified by triple sublimation. Atomic absorption spectroscopic analysis, revealed that the SeO₂ thus prepared contained 99.9999 mass% of the substance. EuCl₃ was obtained by dissolving the oxide in concentrated HCl. The excess of HCl was removed by heating the aqueous solution. The resulting chlorides were dissolved A. Zlatarov University, Bourgas 8010 ²Institute of Chemical Technologies and Biotechnologies, Razgrad 7200, Bulgaria in water, and an aqueous solution of Na₂SeO₃ was added. Na₂SeO₃ was obtained by mixing equimolar amounts of aqueous solutions of SeO₂ and NaOH (99.99 mass%). In order to study the system Eu₂O₃–SeO₂–H₂O at 100°C, 17 mixtures containing Eu₂O₃ and varying concentrations of SeO₂ (from 0 to 85%) were prepared. The experimental technique was based on the conclusions of Chlopin [2] who proved experimentally the possibility of reaching a stable thermodynamic equilibrium between the solid phase and the solutions. The samples were placed in glass ampoules, which were sealed and thermostatted at 100±0.5°C in an air thermostat. They were periodically shaken. The necessary time for reaching equilibrium was determined experimentally by studying the equilibrium kinetics. Then, the liquid and the solid phases were separated at the experimental temperature and subjected to chemical, crystallo-optical and X-ray phase analyses. The determination of Europium as Eu_2O_3 was determined by complexometric titration with a 0.05 M solution of EDTA at pH=5.5 and xylenol orange as indication [3]. SeO_3^{2-} ions were determined iodometrically and gravimetrically [4]. The concentration of Eu^{3+} ions in the liquid phase was determined spectrophotometrically at pH=4.67 using Alizarin S as indicator with a Specol-II apparatus (Carl Zeiss, Jena, Germany) [5]. X-ray phase analysis was made with a TURM apparatus (Germany) with Ni-filtered CuK_{α} -radiation. Thermal analysis was carried out using an OD-102 Derivatograph (MOM, Hungary). A Dokuval optical microscope (Carl Zeiss, Jena, Germany) was used for crystallo-optical analysis. ## **Results and discussion** The data obtained for the system Eu_2O_3 – SeO_2 – H_2O at $100^{\circ}C$ are presented in Table 1 and Fig. 1. Figure 1 shows that the solubility diagram of the system consists of two fields of crystallization. In the first field of the isotherm, in the low concentration range of H_2SeO_3 , a compound with composition $Eu_2(SeO_3)_3\cdot 4H_2O$ is obtained. In the second field of the isotherm in the concentration range of SeO_2 from 0.57 to 54.65 mass%, a compound with composition $EuH(SeO_3)_2\cdot 2H_2O$ crystallizes as the solid phase. The compositions of the compounds obtained were determined by means of Schreinemaker's method and chemical analysis after thorough washing and drying of the solid phases. Chemical analysis of Eu₂(SeO₃)₃·4H₂O gave the concentration of Eu₂O₃ as 47.71%, that of SeO₂ as 45.00%, and that of H₂O as 7.29%. The concentrations calculated theoretically were 47.63, 45.06 and 7.31%, respectively. EuH(SeO₃)₂·2H₂O contains 39.70% Eu₂O₃, 50.54% SeO₂ and 10.05% H₂O (theoretical values were 39.73, 50, and 10.16%, respectively). X-ray phase analysis of these europium selenites confirmed their phase compositions in an aqueous medium and in thermolysis. At concentrations of SeO₂ over 54.65 mass%, the solid phase was totally decomposed. The increase in solubility is probably due to the formation of a new acid salt. However, our attempts to isolate and study this phase failed. | No. | Liquid phase/wt% | | Solid phase/wt% | | Formula of | |-----|--------------------------------|---------|-----------------|---------|---| | | Eu ₂ O ₃ | SeO_2 | Eu_2O_3 | SeO_2 | the solid phase | | 1 | - | 0.05 | 34.50 | 34.50 | Eu ₂ (SeO ₃) ₃ ·4H ₂ O | | 2 | - | 0.35 | 33.87 | 34.06 | Eu ₂ (SeO ₃) ₃ ·4H ₂ O | | 3 | 0.02 | 0.57 | 38.78 | 39.55 | $Eu_2(SeO_3)_3 \cdot 4H_2O$ | | 4 | 0.05 | 0.57 | 38.34 | 47.78 | EuH(SeO ₃) ₂ ·2H ₂ O | | 5 | 0.10 | 1.17 | 37.60 | 47.45 | $EuH(SeO_3)_2 \cdot 2H_2O$ | | 6 | 0.11 | 2.48 | 39.08 | 48.50 | EuH(SeO ₃) ₂ ·2H ₂ O | | 7 | 0.16 | 5.10 | 33.28 | 43,24 | EuH(SeO ₃) ₂ ·2H ₂ O | | 8 | 0.25 | 11.45 | 35.75 | 43.42 | EuH(SeO ₃) ₂ ·2H ₂ O | | 9 | 0.28 | 18.85 | 31.42 | 43.50 | EuH(SeO ₃) ₂ ·2H ₂ O | | 10 | 0.40 | 30.86 | 38.55 | 49.63 | EuH(SeO ₃) ₂ ·2H ₂ O | | 11 | 0.51 | 39.18 | 37.18 | 48.73 | EuH(SeO ₃),·2H ₂ O | | 12 | 0.55 | 46.12 | 36.80 | 48.11 | EuH(SeO ₃) ₂ ·2H ₂ O | | 13 | 0.62 | 51.38 | 35.10 | 49.84 | EuH(SeO ₃) ₂ ·2H ₂ O | | 14 | 0.80 | 54.64 | 33.50 | 51.26 | EuH(SeO ₃) ₂ ·2H ₂ O | Fig. 1 Solubility isotherm of the system Eu_2O_3 -Se O_2 - H_2O at $100^{\circ}C$ Fig. 2 X-ray patterns of the solid phases of the system; $Eu_2O_3-SeO_2-H_2O$ at $100^{\circ}C$, $a-Eu_2(SeO_3)_3\cdot 4H_2O$; $b-EuH(SeO_3)_2\cdot 2H_2O$; $c-EuH(SeO_3)_2\cdot 2H_2O$, heated at $440^{\circ}C$; $d-EuH(SeO_3)_2\cdot 2H_2O$, heated at $720^{\circ}C$; $e-EuH(SeO_3)_2\cdot 2H_2O$, heated at $1200-1300^{\circ}C$; $f-Eu_2O_3$ Fig. 3 DTA and TG curves of $Eu_2(SeO_3)_3 \cdot 4H_2O$ Fig. 4 DTA and TG curves of EuH(SeO₃)₂·2H₂O The DTA and TG curves of $Eu_2(SeO_3)_3 \cdot 4H_2O$ are presented in Fig. 3. They indicate that dehydration starts at $100^{\circ}C$ and the anhydrous salt $Eu_2(SeO_3)_3$ is obtained. It is stable up to $618^{\circ}C$. The exothermal peak at $565^{\circ}C$ is due to crystallization of the amorphous phase $Eu_2(SeO_3)_3$ obtained by dehydration. A confirmation of this interpretation is the fact that at temperatures lower than $565^{\circ}C$ there are no peaks on the X-ray pattern. $Eu_2(SeO_3)_3$ undergoes thermal decomposition between 618 and $700^{\circ}C$ yielding $Eu_2(SeO_3)_2$. This crystalline phase decomposes in two stages. $Eu_2O_3 \cdot SeO_2$ is formed above $760^{\circ}C$. SeO_2 is completely released between 1200 and $1300^{\circ}C$, which is confirmed by the fact that the X-ray pattern of a sample heated in a furnace at these temperatures completely coincides with the X-ray pattern of commercial Eu_2O_3 . Figure 4 shows the DTA and TG curves of EuH(SeO₃)₂·2H₂O. The salt is thermally stable at 100° C. Above 100° C the compound loses water of crystallization and Eu₂(SeO₃)₃·H₂SeO₃ is formed. The tetraselenite Eu₂(SeO₃)₃·SeO₂ is formed above 440° C. In the temperature interval $630-720^{\circ}$ C it decomposes to normal selenite Eu₂(SeO₃)₃ in stages. In the interval $720-820^{\circ}$ C the salt releases 1 mole of SeO₂ and is transformed to Eu₂O₃·2SeO₂ (Eu₂O(SeO₃)₂). In the interval $820-925^{\circ}$ C decomposition results in the formation of a second oxide salt, Eu₂O₃·SeO₂ ((EuO)₂SeO₃). Complete decomposition takes places between 1200 and 1300°C, when the last residues of SeO₂ disappear. All transformations were proved by chemical analysis of the phases obtained beforehand by modelling the decomposition conditions and also X-ray phase analysis and comparison of the X-ray patterns of the intermediate phases. ### References - 1 E. Immonen, M. Kooskenlinna, L. Nisisto and T. Pakkanen, Finn. Chem. Lett., (1976) 67. - 2 V. G. Chlopin, Tr. Radievogo Inst. Akad. Nauk SSSR, 4 (1938) 34. - 3 U. Umland, A. Janssen, D. Rierg and G. Wisch, Theorie und praktische Anwendung von Komplexbildern, Frankfurt/M. 1971. - 4 I. I. Nazarenko and E. I. Ermakov, Analiticheskaia Khimia Selena i Telura, Nauka, Moscow, 59 (1974) 5. - 5 G. Charlot, Les méthodes de la chimie analytique Analyse quantitative minérale, Quatrième édition, Masson et C^{ie}, editeurs 1961.